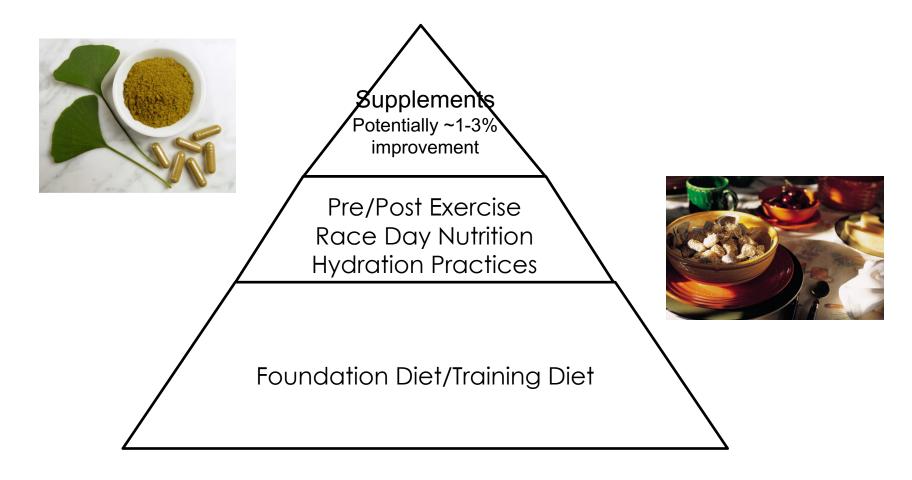


The Carb Controversy: How to best fuel our running

Guelph Victors – January 23, 2018

Cara Kasdorf, RD, MAN Registered Dietitian & Sport Nutritionist



Outline

- Intro to nutrition for running
- Role of Carbs, Protein, Fats
- Current guidelines for carb intake and practical application
 - Types of carbs: fibre, added sugars
 - Guidelines for runners
- Strategies to manipulate carb intake to enhance training effect
 - Low carb/high fat & ketogenic diets for athletes
- Intro to Carb loading and Race Day Nutrition
- Summary & Conclusion

Building Blocks to Optimize Nutrition for Sport

Australian Institute of Sport, 2010

Factors Affecting Diet & Food Choices

- Competition/Race schedule
- Training schedule
- Body composition goals
- General healthy eating
- Habits
- Appetite
- Metabolism
- Digestive health/symptoms

Function & Role of Carbohydrates

- Provide fuel for brain, CNS and energy for muscles through oxidative and anaerobic pathways
- Better energy efficiency with adequate CHO yields greater ATP per volume of oxygen
- Exercise/performance is enhanced when carbohydrate availability matches exercise
- When carbohydrate depletion occurs → fatigue, decreased performance, concentration, increased perception of effort
- Glycogen plays important role in muscle adaptation during training
- Aids in recovery of muscle, and improved immune function/stress markers after exercise

Role of Carbohydrate Taken During Exercise

- Only required in exercise lasting longer than 60-90 minutes or higher intensity exercise lasting 45-75 minutes
- Glycogen sparing effect
- Used as a muscle fuel substrate
- Prevents hypoglycemia
- Activates the reward center in the CNS → perception of effort, fatigue

Protein & Fats

- Protein:
 - Muscle adaptation
 - Recovery and rebuilding after exercise
 - Small amount used as fuel substrate
 - Protein needs are higher in athletes than in general population
 - Athletes often get enough protein in the diet, but protein timing/distribution is often inadequate

Fat:

- Aids in the absorption of fat soluble vitamins
- Plays a structural role in cell membranes
- Used as fuel substrate
- Healthy fats should be included with most meals/snacks

Carbohydrate Guidelines

	Exercise Amount/Intensity	Recommended CHO Intake
Light Exercise	Low intensity/skill- based	3-5 g/kg body weight
Moderate Exercise	Moderate intensity (~1 hr/day)	5-7 g/kg body weight
High Exercise	~1-3 hours per day of moderate to high intensity	6-10 g/kg body weight
Very high	>4-5 hrs per day of moderate to high intensity	8-12 g/kg body weight

Carbohydrate Intake -Example

60 kg runner, training on average ~1 hour per day requires 5-7 grams carb/kg body weight = 300-420 grams carbs per day

Carb Amounts in Food:

- 1 cup cooked pasta 30 grams carbs
- I slice bread 15-20 grams carbs
- 1 bagel 45-60 grams carbs
- 1 cup rice 45 grams carbs
- I medium apple 20 grams carbs
- 1 large banana 30 grams carbs
- ³/₄ cup flavoured yogurt 15 grams carbs
- 1 cup white milk 15 grams carbs
- 1/2 medium-sized potato 15 grams carbs

Sample Day Containing ~300 grams Carbohydrate

Meal/Snack	Food	Carb Amount	
Breakfast	Overnight oats: 1/3 cup rolled oats, 2 Tbsp chia seeds, 1 cup milk, 1 banana, 1 Tbsp maple syrup, ¼ cup nuts/seeds	70 g	
AM Snack	1 med apple + ¼ cup almonds + ¼ cup dried fruit	50 g	
Lunch	Salad w/ 1 small roasted sweet potato, veg, olive oil & vinegar, ½ cup berries, ¾ cup chickpeas	60 g	
PM Snack (pre run) – 1-2 hrs prior	³ ⁄ ₄ cup plain greek yogurt with 1 cup berries and 1 Tbsp maple syrup	30 g	
Post-Run	1 Lara bar + ¼ cup nuts	25 g	
Dinner	4 ounces baked chicken, 1.5 medium potatoes, 2 cup vegetables	60 g	
Total Daily Carbohydrate Intake: 295 grams			

Balancing Carbs with Protein & Fats

- Note: Most meals should contain ~20-40 grams of protein, and snacks should contain ~10 grams protein **dependent on body size, type of training, training goals
- ½ cup cottage cheese 15 grams protein
- ³/₄ cup plain greek yogurt 18 grams protein
- ¹/₄ cup almonds 8 grams protein
- 1 Tbsp peanut butter 4 grams protein
- 1 cup milk 8 grams protein
- Small chicken breast (size of deck of cards) 21 grams protein
- 1 egg 6 grams protein

Example – Protein Needs

- **Breakfast** (24 grams):
 - 2 eggs (12 grams) + 2 slices toast + ½ cup greek yogurt (12 grams) + berries
- **Lunch** (29 grams):
 - Whole grain wrap with 3 ounces chicken (21 grams)/veggies + 1 cup skim milk (8 grams) + fruit
- **Dinner** (28 grams):
 - 4 ounces chicken (28 grams) + 1 baked sweet potato + steamed veggies + salad + 2 cups water
- **Snacks** (~10 grams):
 - ¹/₄ cup almonds (8 grams) + piece of fruit
 - Smoothie with 1.5 cups milk (12 grams) + frozen berries
 - I hard boiled egg (6 grams) + 1 Babybel cheese (4 grams) + piece of fruit

Include Healthy Fats at Each Meal

Ways to Include Healthy Fats at Meals

- Have fatty fish (eg salmon, rainbow trout, mackerel) 2-3x (or more) per week
- Try drizzling olive oil on cooked vegetables, potatoes, or salad
- Try sliced avocado on a sandwich, or mash up ripe avocado for a dip with veggies
- Try a pesto sauce for your pasta
- Have a small handful of nuts or seeds as a snack
- Add wheat germ, chia seed, flaxseed or hemp hearts to your oatmeal

Types of Carbohydrate -Fibre

- Most people should aim for 25-35 grams per day (no upper limit)
- Everyday diet choices should be higher in fibre
- High quality carbs are often higher in fibre (whole grains, vegs, fruits, legumes)
- Avoid too much fibre before running/exercise – may cause digestive discomfort, feeling of heaviness

Food	Fibre Content	ts Medicine Cen
1 slice whole wheat bread	2 grams	
1 medium apple	3.5 grams	
³ ⁄ ₄ cup cooked lentils	6 grams	
3/4 cup cooked beans	9-13 grams	
½ cup broccoli	2 grams	
8 baby carrots	2.5 grams	
½ cup cooked quinoa	3 grams	
¼ cup almonds	4 grams	

Tips for Ensuring Adequate Dietary Fibre Intake

- Aim for 3 servings of fruit per day and 4-5 servings of vegetables (equal to about 2-4 cups)
- Aim to get $\frac{1}{4}$ cup nuts + 2 Tbsp seeds daily
- Aim to have legumes (beans, lentils, dried peas) 3-4x per week (great protein source in addition to fibre)
- Choose whole grains most of the time (eg oats, quinoa, barley, bulgur, whole grain pasta, brown or wild rice)
- Make sure to increase fibre intake slowly and drink lots of water
- Adjust fibre intake for exercise
- High fibre considered >4 grams per serving

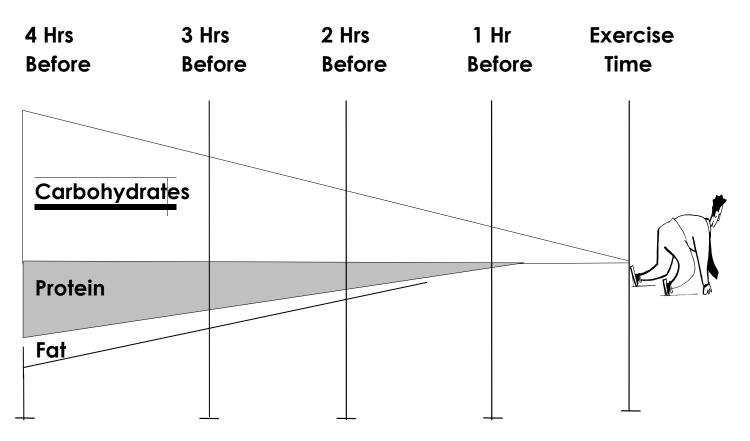
What about sugar?

- For general population: eat less than 24 to 36 grams of added sugar each day (6 to 9 teaspoons)
 - 1 tsp. of sugar = 4 g
 - 1 tbsp sugar= 12 g sugar
 - Low sugar considered <5-8 grams per serving</p>
- Read labels and look at sugar content on processed foods such as:
 - Pop, energy drinks, juice, juice cocktails, added sugar in coffee/teas, sweetened hot beverages, sweets, sauces, baked goods

Added Sugars

- Look for these words on ingredient lists they all mean sugar!
 - Corn syrup
 - Cane sugar
 - Dextrose, Dextrin
 - Fructose
 - Glucose
 - High-fructose corn syrup
 - Maltose, Maltodextrin, Malt syrup
 - Sucrose

- And remember, too many "natural" sugars, like honey, maple syrup and molasses can have impacts on health too!
- **Again, level of exercise and goals must be taken into account when considering how much/what type of sugars are appropriate


How much sugar??

Food	Amount	(g) of sugar
Quaker instant flavoured oatmeal	1 packet	12g
Tim Horton's whole grain carrot muffin	1	29g
Coca Cola	1 can	39g
Vanilla Greek yogurt	175 grams (1 small container)	19g
Clif Bar	1	20g

What to eat before a workout or race?

Low fibre, low fat, high carb, avoid sugar

Adapted from "Nutrition for the Long Run" by Heidi Smith, RD (2003)

Eating Before Race/Workout

Higher Carbohydrate

- Fruits, vegetables, crackers, low-sugar cereals, granola bars, bread, bagels, yogurt
- Need carbohydrate for main energy/fuel source during workouts and races

Low Fat

- Fat is slower to digest will delay carbs from getting into muscles for energy
- Might cause stomachaches, feeling unwell, sluggish

Low Fibre

 High fibre foods should be avoided in the pre-run/workout meal or snack because it takes longer to digest – may cause digestive discomfort

Watch added sugars

 Can cause sugar "spike" and "crash" – shorter acting energy source (eg chocolate bars, candy, pop, high sugar cereals/bars/cookies etc)

Fueling for Exercise: Lower fibre, low fat, high carb avoid sugar

Recommended: Snack 1-3 hours before (1-4 grams carb/kg in the 4 hours before exercise)

Carb Source (60 g carbs)	Protein Source
1 cup pasta (30 g)	1/2 cup meat sauce
1 cup rice (45 g)	3-4 oz. chicken
1/2 bagel (30 g) + 1 banana (15-20 g)	1-2 eggs
2 slices bread (40 g) + piece of fruit (15	2 Tbsp. PB
grams)	

Recommended: Snack 30-60 minutes before

Carb Source (10-20 g carbs)	Protein Source
1/2 - 1 slice bread (10- 20g)	Easy to digest proteins
1 banana (15-20 g)	only: small amt peanut
4-6 saltine crackers (15-20g)	butter, yogurt, milk etc.
1 granola bar (20 g)	

Bars for Pre Workouts

Examples of bars good for before exercise:

- Larabar (watch the fat content - the higher the fat content, may be more difficult to digest before exercise, also watch protein content- some flavours may have higher protein than others)
- Kind Bar (an additional piece of fruit will provide some extra carbs)
- Taste of Nature bar (may need an addition of fruit for extra carbs)
- PROBAR (Watch for fat content)
- Homemade energy bars or bites (like the ones we are sampling tonight!)

*Note: always double check the nutrition label, as nutrients vary with different flavours and ingredients/recipes change

Higher carbohydrate (>25 g)

Lower fibre (<4g)

Lower fat (<4g)

Lower protein (<4g)

Bars for Post Workout

Examples of bars good for after exercise:

- Larabar ALT
- The Simply Bar (would need an additional piece of fruit for extra carbs)
- GORP bars
- Elevate Me bar
- SoLo bar
- Clif Bar
- Quest Bars
- Kirkland Signature Protein Bars

*Note: always double check the nutrition label, as nutrients vary with different flavours and ingredients/recipes change Higher carbohydrate (>25 g)

Can be higher in fibre (>4g)

Can be lower fat (<4g)

Higher protein (10-25g)

Pre-Race/Run Nutrition

Situation	Description	Recommended Carb
General "fueling up"	Events lasting <90 minutes	7-12 g/kg body weight in the 24 hrs prior
Carb Loading	Prep for events lasting >90 minutes	Start 36-48 hours prior: 10-12 g/kg body weight per 24 hours
Speedy Refueling	<8 hours recovery between 2 fuel demanding sessions	1.0-1.2 g/kg body weight/kg/h for the first 4 hours, then regular feeding/eating schedule

Race Day Nutrition

Situation	Description	Recommended Carb
Pre-event Fueling	Events >60 minutes	1-4 g/kg body weight consumed in the 1-4 hours before event
During brief exercise	<45 minutes	No carb required
During sustained high intensity	45-75 minutes	Small amount, including carbohydrate mouth rinse
During endurance events	1.5-2 hours	30-60 grams/hour
Endurance events	>2.5-3 hours	Up to 90 grams/hour Dietitians of Canada, 2016

Fueling During Running

Marathon Event: 30-60 grams carbohydrate per hour

Example: 4 hour marathon (30-60 grams/hour for every hour after first hour = 90 grams-180 grams total)

*If taking in gel or sport drink every 30 minutes – 7x throughout the race: 13-26 grams CHO every 30 minutes

1 GU Gel = 23 grams

250 mls Nuun Performance = 8 grams

250 mls Eload = 13 grams

Untapped Gel = 26 grams

Example: 1/2 gel + 125-250 mls Eload every 30 minutes = 18-25 grams CHO

18-25 grams x 7 = 125-175 grams CHO total

Manipulating carbohydrate for training

- Glycogen plays important role in muscle adaptation during training:
 - "Train low" start exercise session with low muscle glycogen by doing 2 workouts in 1 day without adequate carbohydrate repletion after first session
 - Fasted workouts
 - Not taking in any carbohydrate during prolonged exercise sessions
- Enhances training effect by:
 - Increasing mitochondrial activity and content
 - Increased rates of lipid oxidation increased free fatty acid oxidation
 - Increased molecules that have glycogen binding domain

Must assess purpose of training session/plan – High quality training sessions vs enhancing training adaptation

Food as Fuel

Fuel Substrate	Rest	Light- Moderate Intensity	High- Intensity Sprint	High- Intensity Endurance
Fat	60%	55%	3%	15%
Glucose/Glycogen	35%	40%	95%	70%
Protein	2-5%	2-5%	2%	5-8%

Low Carb, High Fat & Ketogenic Diet?

- Low Carb High Fat: can be fat adapted in 3-5 days (ie increased rates of fat oxidation)
- Ketogenic: usually requires >3 weeks to be in full ketosis
- Requires individual to consume <20-50 grams carbohydrate per day
- Much of the focus on keto-diet is for weight loss, and reported health benefits (diabetes, dyslipidemia etc) – little long term research to support long term benefits
- Weight loss often occurs in ketosis due to water loss, loss of carbohydrate (glycogen) stores, adipose tissue being used as fuel, some lean tissue loss – sustainability of the diet is key factor

Why would fat adaptation be desirable for endurance athletes?

Energy storage (aka Body fat)

- 1 lb body fat = 3500 kcal stored energy
- 150 lb person with 25% body fat = 37.5 lb body fat = 131,250 stored calories!

Compare to....

- Liver glycogen 80 g = 320 calories
- Muscle glycogen 350 g = 1400 calories

Most people require 2500-3500 calories to run a marathon.....

Does it work?

- Results in athletes show that fat adaptation (or glycogensparing) may actually be caused by down regulation of carbohydrate metabolism, resulting in decreased performance
- May be useful for as a weight reduction strategy in recreational athletes if needed (weigh pros and cons and work with Dietitian)
- **May** be useful in ultra-endurance sports (eg ultra marathons)
- Not recommended for most athletes

Benefits of seeing an RD for Sport Nutrition Plan

- Develop nutrition plan to support training goals and optimize training
- Develop pre-run/race strategy
- Develop Carb-loading plan for week prior to race, if needed
- Develop race day Nutrition & Hydration Plan
- Optimize recovery in training and racing/competition season
- Ensure balance of micronutrients for optimal health, to reduce inflammation, optimize performance and recovery and ensure deficiencies are corrected appropriately
- Strategies for digestive issues (related to running or other)
- Review use of supplements and ergogenic aids

- Websites for tips and tools:
 - www.dietitians.ca
 - www.coach.ca
 - www.scandpg.org
 - www.ausport.gov.au/ais/nutrition
 - www.gssi.com
- For recipe inspiration:
 - www.cookspiration.com
 - www.eatrightontario.ca
 - www.cookinglight.com
 - www.lentils.ca
 - www.pulsecanada.com
 - www.ohsheglows.com
 - www.halfyourplate.ca
 - www.cleaneatingmag.com
 - www.runfasteatslow.com

THANK YOU!

For additional questions, information, or to book a consultation, please contact me at <u>carakasdorf.rd@gmail.com</u>

Selected References

- Australian Institute of Sport (2014). Retrieved from http://www.ausport.gov.au/ais/nutrition/fact_sheets/carbohydrate_ how_much
- Burke, L.M., Ross, M. L., Garvican-Lewis, L.A., Welvaert, M., Heikura. I.A., Forbes, S.G., Mirtschin, J. G., Cato, L.E., Strobel, N., Sharma, A.P., Hawley, J.A. (2017). Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite walkers. *Journal of Physiology* 959 (9) 2785-2807
- Dietitians of Canada (2016). Nutrition and athletic performance: Position of Dietitians of Canada, the Academy of Nutrition and Dietetics and the American College of Sports Medicine. Retrieved from <u>www.dietitians.ca/sports</u>
- Stellingwerff, T. (2018). Low-carb, high-fat diets for athletes: what does the evidence say? Summary presented at the Canadian Nutrition Society Thematic Conference, Toronto, Ontario.